高分子材料的性质特点(6篇)

时间:2024-05-22 来源:

高分子材料的性质特点篇1

关键词:ZnO;模板制备法;PVD;PLD;金属有机化合物气相沉积

随着科学和商业的飞速发展,人们对纳米半导体材料有了更加深入的认识,对其在光学器件和电学器件方面的应用产生了浓厚的兴趣。最初人们在研究ZnSe和GaN等短波长纳米半导体材料方面取得了一定的进展,GaN制备蓝绿光LED的技术已经相当成熟。但是,由于ZnSe稳定性较差,一直使之无法商品化生产。在长期的对宽带半导体材料的科学研究中,人们发现ZnO半导体纳米材料具有更多的优点。ZnO是一种新型的宽禁带半导体氧化物材料,室温下能带宽度为3.37eV,略低于GaN的3.39eV,其激子束缚能(60meV)远大于GaN(25meV)的激子束缚能。由于纳米ZnO在紫外波段有较强的激子跃迁发光特性,所以在短波长光子学器件领域有较广的应用前景。此外,ZnO纳米半导体材料还可沉积在除Si以外的多种衬底上,如玻璃、Al2O3、GaAs等,并在0.4-2μm的波长范围内透明,对器件相关电路的单片集成有很大帮助,在光电集成器件中具有很大的潜力。本文阐述了近年来ZnO纳米半导体材料的制备技术,并对这些技术的优缺点进行了分析。

ZnO是一种应用较广的半导体材料,在很多光学器件和电学器件中有很广泛的应用,由此也产生了多种纳米半导体器件的制备方法,主要有以下几种:

1模板制备法

模板制备法是一种用化学方法进行纳米材料制备的方法,被广泛地用来合成各种各样的纳米棒、纳米线、纳米管等。此种方法使分散的纳米粒子在已做好的纳米模板中成核和生长,因此,纳米模板的尺寸和形状决定了纳米产物的外部特征。科学家们已经利用孔径为40nm和20nm左右的多孔氧化铝模板得到了高度有序的ZnO纳米线。郑华均等人用电化学阳极氧化-化学溶蚀技术制备出了一种新型铝基纳米点阵模板,此模板由无数纳米凹点和凸点构成,并在此模板上沉积出ZnO纳米薄膜。此外,李长全、傅敏恭等人以十二烷基硫酸钠为模板制备出ZnO纳米管。该方法优点:较容易控制纳米产物的尺寸、形状。缺点:需要模板有较高的质量。

2物理气相沉积(PVD)

物理气相沉积可以用来制备一维ZnO纳米线和二维ZnO纳米薄膜,原理是通过对含Zn材料进行溅射、蒸发或电离等过程,产生Zn粒子并与反应气体中的O反应,生成ZnO化合物,在衬底表面沉积。物理气象沉积技术已经演化出三种不同的方法,它们是真空蒸发法,真空溅射法和离子镀,离子镀是目前应用较广的。离子镀是人们在实践中获得的一种新技术,将真空蒸发法和溅射法结合起来,在高真空环境中加热材料使之汽化后通入氢气,在基体相对于材料间加负高压,产生辉光放电,通过电场作用使大量被电离的材料的正离子射向负高压的衬底,进行沉积。张琦锋、孙晖等人用气相沉积方法已经制备出了一维ZnO纳米半导体材料。优点:所得到的纳米产物纯度高,污染小;薄膜厚度易于控制;材料不受限制。但是这种方法对真空度要求较高。

3脉冲激光沉积(PulsedLaserDeposition)

脉冲激光沉积也称PLD,常用于纳米薄膜的制备。其工作原理就是用特定波长和功率的激光脉冲聚焦光束,溅射真空状态下特定气压中的加热靶材,激光束与靶材相互作用而产生的粒子团喷射到衬底表面,通过控制气流速度控制材料在衬底表面的沉积速度。牛海军等人用一种新颖的垂直靶向脉冲激光沉积(VTPLD)方法,在常温常压空气环境下,在玻璃基底上得到ZnO纳米薄膜。该方法优点:制备的薄膜物质比例与靶材相同;实验控制条件较少,易于控制;衬底温度要求较低。缺点:薄膜杂志较多;单纯溅射产生的粒子团密度不易控制,因此无法大面积生长均匀的薄膜。

4分子束外延(MolecularBeamEpitaxy)

分子束外延(MBE)技术可以制备高质量薄膜。MBE技术可以在特定超高真空条件下较为精确的控制分子束强度,把分子束入射到被加热的基片上,可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。分子束外延设备主要包括超高真空系统、分子束源、样品架、四极质谱计QMS和反射式高能电子衍射装置RHEED。周映雪等人利用分子束外延(MBE)和氧等离子体源辅助MBE方法分别在三种不同衬底硅(100)、砷化镓(100)和蓝宝石(0001)上先制备合适的缓冲层,然后在缓冲层上得到外延生长的ZnO薄膜。该方法优点:生长速度极慢,每秒1~10;薄膜可控性较强;外延生长所需温度较低。缺点:真空环境要求较高;无法大量生产。目前常用于生长高质量的ZnO薄膜分子束外延有两种:一种是等离子增强,另一种是激光,两种方法均已生长出高质量的ZnO薄膜。

5金属有机化合物气相沉积(MetalOrganicChemicalVaporDeposition):

金属有机化合物气相沉积(MOCVD)是一种利用有机金属在加热衬底上的热分解反应进行气相外延生长薄膜的方法。反应室是MOCVD的核心部分,它对外延层厚度、组分均匀性、异质结界面梯度、本底杂质浓度以及产量有极大的影响。按反应室形状的不同,可分为水平式反应室和立式反应室,同时根据反应室的压力又可分为常压MOCVD和低压MOCVD。刘成有利用MOCVD方法制备出高质量的ZnO薄膜。在一定衬底温度及压强下,制备出ZnO纳米管。该方法优点是:薄膜可控性较强;适合大批量生产。其缺点有:需精确控制;传输气体有毒性。但目前不仅利用MOCVD法已生长出较高质量的ZnO薄膜,而且还获得了MgZnO三元系薄膜。

除上述纳米材料的常用制备技术,还有很多其他方法。随着科技的发展和高质量纳米产品的需求,人们对纳米半导体材料的研究会更加深入,对其生长机理理解的更为透彻,随之纳米半导体材料制备技术将不断地发展和完善。高质量纳米半导体产品会不断出现,并被广泛的应用于人们的生活中。

参考文献

[1]谢自力,张荣,修向前,等.GaN纳米线材料的特性和制备技术[J].纳米技术与精密工程,2004,2(3):187-192.

[2]张利宁,李清山,潘志峰.模板合成法制备ZnO纳米线的研究[J].量子电子学报,2006,(4).

[3]李长全,傅敏恭.十二烷基硫酸钠为模板制备ZnO纳米管新方法的研究[J].无机化学学报,2006,(9).

[4]张琦锋,孙晖,潘光虎,等.维纳米结构氧化锌材料的气相沉积制备及生长特性研究[J].真空科学与技术学报,2006,26(1).

[5]牛海军,樊丽权,李晨明,等.垂直靶向脉冲激光沉积制备ZnO纳米薄膜[J].光电子激光2007,18(3).

[6]周映雪,俞根才,吴志浩,等.ZnO薄膜的分子束外延生长及性能[J].发光学报,2004,(3).

高分子材料的性质特点篇2

功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。

所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。

二.功能高分子材料

功能高分子材料按照功能特性通常可分成:分离材料和化学功能材料;电磁功能高分子材料;光功能高分子材料;生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。

随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。

一般归纳起来医用高分子材料应符合下列要求:化学稳定性好,在人体接触部分不能发生影响而变化;组织相容性好,在人体内不发生炎症和排异反应;不会致癌变;耐生物老化,在人体内材料长期性能无变化;耐煮沸,灭菌、药液消毒等处理方法;材料来源广、易于加工成型。

经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。

三.生物医用高分子材料

目前,除人脑外的大部分人体器官都可用高分子材料来制作。对生物医用高分子材料,除了要求具有医疗功能外,还要强调安全性,即要对人体健康无害。目前在血液相容性高分子、组织相容性高分子、生物降解吸收高分子、硬组织材料用高分子和生物复合高分子材料、医用高分子现场固化材料、医用粘合剂、固定化酶、高分子药物释放和送达体系等都有相应的研究。随着环保概念的提出,生态可降解高分子材料的开发和应用也随之日益受到重视。如聚乳酸塑料PLA,在废弃后自然条件下,通过微生物的分解作用,只需六个月至两年时间即可完全降解,降解反应的产物为水、二氧化碳、乳酸等是植物生长良好的促进剂,对环境无任何污染。

离子交换与吸附树脂是一类带有可离子化基团或其他功能性基团如亲油基团的二维网状交联聚合物。常用的离子交换与吸附树脂多为球状珠粒,其粒径为0.3-1.2mm。此外,还要具有高的机械性能、较好的化学稳定性、热稳定性、亲水或亲油性、渗透稳定性和高的交换/吸附容量。在水/油中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛,而且发展迅速。除一般用的离子交换树脂外,近来还发展了具有特殊吸附功能的离子吸附树脂:如高吸油树脂等,这些高分子吸附剂可以从有机溶剂或有机无机混合相体系中吸附有机溶剂如各种油类。

随着医用科技的蓬勃发展和环境污染的日益严重,当今材料技术的发展趋势一是从均质材料向复合材料发展,二是由结构材料往功能材料、多功能材料并重的方向发展。这种发展趋势使得医用复合材料和环境处理材料得到了快速发展。

四.医用高分子材料的发展方向

可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视,无论是作为缓释药物还是作为促进组织生长的骨架材料,都将得到巨大的发展。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。

任何一种材料都是通过其表面与环境介质相接触的,因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱,但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等)的改变在极短时间内发生相应的变化,从而造成表面性质的改变,此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难,因此,可利用与天然聚合物杂化的方法来达到上述目的,同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的,必将成为医用生物高分子材料发展的一个主要趋势。

参考文献:

1、焦剑.功能高分子材料.化学工业出版社,2007.7

2、俞耀庭,张兴栋等.生物医用材料.天津:天津大学出版社,2000.

3、陈先红,郑建华.生物降解高分子材料——聚酸酐的研究进展高分子材料科学与工程2003

高分子材料的性质特点篇3

关键词:无机非金属材料研发材料发展材料应用

中图分类号:TB321文献标识码:A文章编号:1672-3791(2012)11(b)-0057-01

1无机非金属材料简介

1.1无机非金属材料范畴

当今的无机非金属材料科学是在20世纪40年代开始由传统的硅酸盐材料科学逐渐演变发展而来的。目前,无机非金属材料、金属材料和有机高分子材料已成为社会各行各业使用的三大主要材料。全球无机非金属材料的快速发展以及其新产品的不断涌现为社会的发展做出了卓越的贡献。

1.2无机非金属材料的优点

无机非金属材料是一种固体无机材料,具有很强的整体性,其理化性质稳定,不易老化、风化。无机非金属材料因其耐久性和有效性方面的优异表现,且能承受高温,防水性能也表现出色,所以其也是一种很好的防火材料。无机非金属材料本身属于一到三级耐火材料标准,其材料结构紧密,其也具有很好的防水渗透能力,防雨水和地表渗透性能。无机非金属材料的物理、化学性质稳定,与酸碱反应敏感度不大,具有很好的耐酸碱性,同时,无机非金属材料对鼠害,虫害的忍耐度比较大,能保证长久的正常的使用效果。

2国内无机非金属材料的现状

2.1无机非金属新材料的新应用

2.1.1高技术陶瓷材料

高技术陶瓷是以人工合成的超细高纯粉体为原料制备的一种新型无机非金属材料,其主要使用各种先进材料成型方法、优秀的当代烧结工艺以及精密加工技术制作而成。高技术陶瓷材料具有高性能、高附加值的特点,目前已经广泛应用于高端技术领域和顶尖国防材料领域。高技术陶瓷具有耐高温、高硬度、高刚度、耐磨耐腐蚀性优越等优点,可用于陶瓷机械零件、生物陶瓷材料、集成电路、各种传感器等领域。大量材料应用结果表明:高技术陶瓷材料是21世纪国家经济和科技发展水平的重要特征。

2.1.2纳米材料

随着纳米科学技术的快速发展,纳米材料也迅速得到发展,纳米材料由极细晶粒组成,其晶粒尺寸在纳米尺度范围,与微米晶体材料相比,在材料力学、材料光学、材料电磁学等方面具有更加优异的表现,因此纳米材料科学是当今凝聚态物理材料领域的热点研究方向。比如:纳米碳管的直径为1.4nm,5万根纳米碳管并排后才跟一根头发一般粗,但是其强度已达到钢的100倍。多数研究表明,纳米材料的特殊性将在未来日常生活和高科技领域广泛应用。例如,利用纳米技术研发的新型电脑其性能更优良;飞机表面涂覆纳米硅基陶瓷粉可以成功避开雷达的监测等。

2.1.3复合氧化物与化学传感器材料

复合氧化物敏感材料与化学传感器对信息感知度强,其形态千变万化、性能各异、功能多样。目前,对这类材料的研究重点材料主要有:新型半导体材料;有害气体敏感材料;复合氧化物气敏材料等。多功能敏感材料的传感元件结构简单、使用方便、价格便宜、灵敏度高。广泛用于火灾报警、可燃气报警、汽车尾气检测等方面。

2.1.4特精细化学品材料和功能化合物材料

目前,特精细化学品材料和功能化合物材料品种越来越多,其主要包括畜牧业饲料添加剂、饮食添加剂、灭火剂、生氧剂等等。特种精细化学品和功能化合物的生产产量小、规模小,但是生产的技术含量高,具有很好的经济效益和市场前景。

2.1.5固体电解质

近十几年来,固体电解质材料发展较快。由于非核能能源技术发展的需要,固体电解质材料中的新能源技术的研发引起人们极大的关注。当前,这类材料的研究体系已经成为单独的固态离子学学科。固体电解质研究重点主要是碱金属离子材料,未来具有很好的经济效益和市场前景。

2.2无机非金属材料的发展趋势

未来,无机非金属材料的发展趋势将有以下几点:(1)材料与高科学技术领域的研发紧密联系。随着全球电子工业、高能电池、太阳能技术的迅速发展,未来无机非金属新材料发展和高科技发展之间的联系将会更加紧密。(2)各种材料复合程度提高。相互交叉的各学科领域相互合作研发的复合材料将占据材料工业越来越大的市场规模。(3)高分子复合材料的广泛应用。高分子复合材料具有良好的机械性能、光电材料特性和磁学等功能。这些新材料将在生物、机械、光学、电子学等领域取得更广大的应用。

2.3无机非金属材料在我国发展中出现的问题

虽然,无机非金属材料在我国发展迅速,其新技术与新工艺不断得以应用与推广,无机非金属材料的产量也得到突破。但是,我国传统无机非金属材料依然存在着品种杂、质量档次低、高科技含量少,国际竞争力不强的现象。导致这现象的主要原因是国内材料企业过多,市场竞争失衡,企业总体生产工艺差,材料工作人员素质差,高水平材料研发机构少等等。21世纪对无机非金属材料需要量大,质量要求也越来越高。在激烈的市场竞争下,国内材料型企业要想生存与发展,必须提高企业研发、生产、销售高科技材料的能力,积极参预国际材料市场的竞争,提高自身的核心竞争力。

3国内无机非金属材料的应用与发展建议

3.1国家的角度

国家政府应加大对国内建材工业的产业化结构调整力度,合理引导企事业单位步入材料市场的正轨,从宏观经济、宏观行政手段使国内无机非金属材料的应用与发展正规化、可持续化。

3.2法律的角度

政府应制定相关的法律法规,防止无机非金属新材料研发结果被侵权的现象,充分利用法律手段严惩不法分子对材料领域的破坏行为。同时,要尽快制定适应我国科研体制改革的法律法规,保证无非金属新材料的研发与生产。

3.3人才的角度

国家与企业都应加快有关材料人才的培养速度,不断优化教育资源,以最新材料相关知识和研发体系来培养无机非金属材料新人才。

4结语

目前,国内无机非金属材料在国民经济建设的作用越来越重要。国内无机非金属材料的发展和应用是国内特色社会主义经济体制改革的重要标志之一,无机非金属材料的发展与应用已远远超出其自身的范畴,它带动了国内各个科学领域的创新,推动了国内科学技术的快速发展。

参考文献

[1]张义顺.传统无机材料的现状及新材料的发展趋势[J].焦作工学院学报,2000(19).

高分子材料的性质特点篇4

关键词:上转换材料稀土研究进展

中图分类号:O482文献标识码:A文章编号:1672-3791(2011)09(c)-0052-01

稀土上转换发光材料是指材料吸收能量较低的光子时却能够发出较高能量的光子的材料,或者也可以说是受到某种光激发时,材料可以发射比激发光波长短的荧光材料。由此可知,上转换发光的本质是一种反Stokes发光。一般来说,稀土离子上转换发光所用介质是晶体或玻璃态物质,通过激发态吸收或者各种能量的传递过程,稀土离子被激发至高于泵浦光子能量的能级,向下跃迁而发射上转换荧光。

早在1959年,就已经出现了利用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光的报道。但由于早期最好的上转换材料的发光效率还不超过1‰,并且由于发光二极管的发射峰与上转换材料的激发峰匹配的不是特别理想,因此并没有达到实用化的水平。1962年,上转换发光现象又在硒化物中得到了进一步的证实,红外辐射转换成可见光的效率达到了相当高的水平。1966年,Auzel在研究钨酸镱钠玻璃时意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。

在此后的十几年内,上转换材料就发展成为了一种把红外光转变为可见光的有效材料,并且达到了实用的水平。例如,上转换材料与发红外光的Si-GaAs发光二极管(LED)配合,能够得到绿光,其效率可以与GaP发光二极管媲美,这可以说是很大的突破。它还可以用于各类半导体激光器的红外检测、红外发光二极管发射光跟踪、YAG等大型激光器的校对等。20世纪90年代初,利用上转换材料实现激光输出获得了令人振奋的成果:不仅在低温下(液氮温度),于光纤中实现了激光运转,而且在室温下,在氟化物晶体中也成功地获得了激光运转,光-光转换效率超过了1%,高达1.4%,从而使红外激发上转换材料在显示、光计算和信息处理等领域显示了广泛的实用前景。

近几年来,纳米材料成为稀土离子上转换发光领域中一个新的研究热点。纳米发光材料表现出了许多特性,例如小尺寸效应、高比表面效应、量子效应等,具有特殊的光学性质;例如材料的光学非线性、光吸收、光反射、光传输过程中的能量损耗等性能都与纳米微粒的尺寸有很强的依赖关系,这些光学特性对于改善稀土离子上转换发光材料的性能是非常有吸引力的。除了在无机材料领域对稀土离子上转换发光进行了研究外,在有机领域中人们也开始寻找高效、稳定的稀土离子上转换发光材料以满足人们的要求。1995年,Brodin等[1]在聚环氧乙烯薄膜中掺入Er3+,650nm泵浦下观察到了强烈的绿光和微弱的蓝光。2000年,Auzel[2]在制备掺杂稀土离子的氟磷酸盐玻璃时,引入有机前驱物,很好的改善了玻璃的特性,使稀土离子在玻璃中的分布较均匀。

稀土上转换发光材料所具有的特殊性质决定了它在很多方面都有很好的应用前景,特别是在激光技术、光纤通讯技术、纤维放大器、显示技术与防伪等方面的应用更为广泛。最近,用上转换荧光材料作为生物分子荧光标记探针受到了广泛关注。荧光探针在生物芯片技术中起着示踪标记的作用,它的优劣直接影响到了检测的效果。应用于生物体标记的荧光材料主要包括有机染料、稀土螯合物、量子点等。这些材料普遍存在着的一些问题是:有机染料价格昂贵、稳定性低、容易受到干扰而使测试的灵敏度下降,而且对细胞的毒副作用也比较大;稀土螯合物的发光受配体和溶剂性质的影响比较大,因此可以采用的发光体系有限。量子点由于具有宽的激发光谱、窄的发射光谱、可精确调谐的发射波长、可忽略的光漂白等优越的荧光特性,是一类理想的荧光探针,近年来被人们广泛深入的研究。但是它同时又具有一个缺点,就是被检测的生物体会发生自感荧光与它干扰,这样就不能区分量子点发出的荧光和生物自身发出的荧光。于是人们把目光集中到稀土上转换发光纳米晶上来。由于稀土纳米晶的发光在自然界中非常少见,生物物体自身更是不具备这种性质,所以它用于生物检测就具有独特的优势。2001年,Hampl[3]和Niedbala[4]两个小组分别报道了用UPT(Up-ConvertingPhosphorTechnology)技术对生物进行检测的系统研究。UPT技术首次被用于免疫层析实验。他们将上转换材料同生物分子相连后利用免疫层析技术对抗原进行检测取得了很好的结果。目前免疫层析技术因为其快速,方便,准确而成为医学检测的发展方向。UPT技术用于免疫层析技术更加提高了这种方法的可靠性。由于层析所用的底版在红外光照射下不发光,所以观测到的信号将必然是有上转换纳米晶发出的。稀土掺杂纳米发光材料与量子点一样具有优良的荧光品质,目前其制备工作己经取得了一定的进展,稀土掺杂纳米发光颗粒的合成与光谱性能的研究是近些年来材料科学领域的一个新兴研究增长点,最近几年相关研究的进展更是日新月异。利用稀土上转换荧光材料制作成的荧光探针以及与其匹配的扫描设备大大降低原料和设备的成本,而且由于上转换发光材料是用红外光作为激发光源,激发能量较低而不会损伤生物样品,也不会激发出背底荧光,从而使检测灵敏度和线性范围得到大大的提高。

但目前有关荧光探针的报道中所使用的稀土上转换荧光材料的颗粒太大,大于所标记的生物分子如蛋白质或DNA,因而悬浮性差,样品均匀度低,影响了其在生物标记中的应用,因此为了方便偶联,标记粒子的尺寸最好和被标记的抗原、抗体的尺寸同等大小。目前,具备纳米尺寸的上转换发光材料是最近几年开始研究的,但是对于上转换材料来说,尺寸达到十几个纳米的时候,材料表面出现大量的缺陷,这些缺陷能够捕获电子,降低上转换效率,同时由于激发光都是长波,波长远比粒子的尺寸大,容易绕过粒子,穿透到材料的内部。寻找更理想的基质材料将是研究的热点。

参考文献

[1]BrodinA,MattssonB.,TorellA.etal..ASpincoatedpolymerfilmsashostsforEr3+withblueandgreenupconversionradiation.ElectrochimicaActa,1995,40(13):2393~2395.

[2]AuzelF.,GoldnerP.,deSaG.F.Weakclusteringandself-quenchinginafluorophosphatesglassdopedbyYb3+andEr3+organicprecursors.Non-Cryst.solids.,2000,265:185~188.

高分子材料的性质特点篇5

【关键词】高分子;化学;发展;方向

中图分类号:F407文献标识码:A

一、前言

我国高分子化学一直都是我国发展的重点,这项技术对于很多相关产业非常有帮助,高分子化学是高分子材料的研究基础,已经涉及到了机械行业,建筑行业等多个行业,因此发展高分子化学对于我国高分子材料行业是非常有帮助的。

二、现如今高分子化学的发展情况和应用范围

自从20世纪到现在,随着工业技术的快速发展,天然资源已经露出了疲态,科学家们已经开始使用高分子化学进行材料的合成。有数字表明,在之前的40年中,使用材料的速度正在以每10年五倍增长,人类三大合成材料,其中包括塑料、橡胶、纤维,在使用过程中表现出了令人惊讶的增长速度。新型的材料,特别表现在合成材料,在工业、建筑、农业、电子技术方面都被广泛使用,极大的支撑着人类的日常生活,是使国民经济持续发展的必要动力源泉。

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

五、高分子化学的发展方向

1、使地球更加绿色化

在现在很多工业发达的城市,天空中都会飘着非常浓郁的黑烟,对人们的日常生活有非常严重的污染。绿色,在现在被认为是没有污染、再生性或者可以循环使用。在没有污染方面,我们需要做的就是减少工业废弃物的排放、相对的减少污染源。现在的情况表明,化学行业中具有污染和治理两个方面的性质,可以对绿色使用材料进行研究,也可以继续对环境造成恶化。例如:在研制的过程中使用的催化剂、溶解剂、中间物品等,在生产过程中产生的废气、废渣、废弃液体等都是对环境造成影响的主要元凶,若长期的进行排放,会对环境造成严重的影响,甚至会导致不可逆转的事情发生。

2、减少的自然资源的使用依赖

目前研究的高分子合成材料对石油具有很强的依赖性,众所周知,石油是经过地球非常漫长孕育才出现的,另外,石油也是现如今人类社会非常重要的能源,石油资源现在正在快速的减少,而且不能快速的进行补充,所以人们现在非常急切的找到可以代替石油使用的资源,这已经成为现在高分子化学研究中非常重要的课题。在对物质中原子和分子的比率进行调节,对物质的微观特性、宏观特性以及表面性质进行加强控制,也许这种物质就会满足一些行业的使用要求,当这种情况出现的时候就可以把这种物质作为材料使用。所以,在对材料进行配置的时候就会减少对不可再生资源的依赖程度,并对使用材料和环境进行相互协调,这是现如今化学研究当中非常重要的领域。现在很多高分子合成材料都非常依赖石油资源。想要解决目前的情况,可以对天然高分子进行利用,这其中也应该包含对无机高分子的不断探索和研究。

现在由石油合成的高分子材料,主要因为原子中以碳为主要元素,其中还含有少量的氮、氧等原子,所以被称为有机高分子。无机高分子是因为主链上的组成原子中不含碳。根据元素的性质进行判断,大约有40~50种元素可以成为长链分子。现在引起科学家高度重视的一种无机高分子,它的主链上都是硅原子,并且含有有机侧链的聚硅烷。

3、使高分子材料不断纳米化

现在很多高分子化学反应中的原子经过重新排列组合之后的反应空间要比原子的大小大出很多,所以,化学反应的研究要在一个受限空间之中进行。若在有限的空间中,像纳米量级的片层当中,小型分子由于和片层分子相互作用而且还在一个比较受限的空间内进行排列,之后产生单体聚合,聚合之后的产物的拓扑结构不会再受限的空间内进行全部的复制,这种情况和自由空间的结果完全不同。我们也许会在受限制空间内进行聚合反应的分子中提炼出高分子纳米化学的定义。化学的研究对象基本都是纳米量级的分子和原子,但是因为没有精细的方式,没有达到可以在纳米尺度上精确控制分子或者原子的程度,所以现如今很难做到对分子的精准设计,使化学的合成让人感觉非常的粗放。高分子化学在纳米程度上精要精确的按照分子设计,在此基础上确定分子链中的原子配比位置以及相互结合的方式,通过纳米技术对分子、原子和分子链进行非常精确的控制,达到对高分子各级结构的位置确定。这样就可以精确的控制新合成材料的功能和特性。

4、面向智能材料的高分子化学研究路线

20世纪的人类社会是以合成材料为标志的,在21世纪人类社会的标志将会是智能材料。高分子化学仍然是进入智能材料时期非常重要的组成部分。材料自身具有的功能可以根据外部条件的变化,有意识的进行调节和修复等一系列措施,这就是智能材料的基本定义。现在科学家已经了解高分子有软物质这一特征,简单说就是可以对外场具有反应。

六、结束语

综上所述,高分子化学已经发展到了非常不错的方向,在很多方面都有非常广阔的运用,目前高分子化学会朝着绿色以及环保方面进行发展,随着高分子化学不断取得突破,未来使用高分子材料的前景会更加的广阔。

参考文献

[1]王立艳.《高分子化学》理论与实践教学的整体优化研究[J].广州化工,2012,40(4):108-109.

[2]张宏刚.新型高分子化学注浆材料在碱沟煤矿的应用[J].中国高新技术企业,2011(34):63-64.

[3]何冰晶,王庆丰,刘维均,等.能量最低原理在高分子化学教学中的应用探索[J].高分子通报,2011(12):141-144.

[4]董建华.从高分子化学与衣食住行到高科技发展[J].化学通报,2012,74(8):675-682.

高分子材料的性质特点篇6

人们通常把材料、信息和能源人们通常把材料、信息和能源并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有磁性材料”和超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有磁性材料”、金属薄膜材料”、非晶态金属材料”、信息材料”、超导材料”及智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把材料的磁性能”作为一个章节进行讲授。

作为重要的现代信息功能材料的磁性材料,其发展具有悠久的历史,在这方面已经有许多专门的文献资料进行了介绍,在此不再赘述。人类很早就开始了磁学的研究,但直到量子力学创立后,才对磁性的起源有了一个较为清晰的认识,也就是说,磁性本质上起源于物质的量子性质。这就说明要研究与磁性相关的现象,就必须具有《量子力学》的学习背景;要研究大量微观粒子聚集体的磁学性质,就必然要用到《热力学统计物理》的知识;要研究固体的磁学性质,也必然要对《固体物理》有深入的了解。所以,在学习《磁学》课程之前,必须要以这三门课程的学习为先导,而在材料科学与工程专业中作为专业基础课,都会专门开设这三门课程,这也就为磁学课程的开设创造了有利条件。我校的探索实践表明,在讲授中应以《磁性材料》课程为主线来进行讲授,并且适当增加一些必要的磁学知识和磁测量知识,以利于学生的理解,也有利于学生对其他相关课程的学习。我校几年来的实践教学都收到了良好的效果。人们对纳米结构体系与新的量子效应器件的研究已经取得了许多新的进展,有许多成果已经产业化,并由此带动了传统产业的技术升级和技术进步,从而掀起了纳米科技热潮。纳米结构由于具有纳米微粒的特性,如量子尺寸效应、小尺寸效应、表面效应等特点,又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等,这些都属于量子力学现象,现代纳米科技研究也多是以这些效应为出发点来进行的,这些内容也是材料科学与工程学科各门主干课程的重点内容。磁学主要研究物质的磁性及其起源,也就是研究与电子的自旋相关的性质及理论。磁学从创立之初就一直在从事与量子效应有关的知识研究。从量子力学创立至今,磁学从理论上对这些问题的探索已经有将近一个世纪的时间,积累了丰富的知识,对磁学相关知识的学习,必然会大大促进学生对材料科学与工程学科的学习和理解。

并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有磁性材料”和超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有磁性材料”、金属薄膜材料”、非晶态金属材料”、信息材料”、超导材料”及智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把材料的磁性能”作为一个章节进行讲授。

【高分子材料的性质特点(6篇) 】相关文章:

转正工作总结范文(整理10篇) 2024-05-21

数学教研组教学总结范文(整理10篇) 2024-05-20

幼儿园大班的工作总结范文(整理4篇 2024-05-15

班主任家访工作总结范文(整理4篇) 2024-05-15

慢病工作总结范文(整理7篇) 2024-04-28

学习委员工作总结范文(整理10篇) 2024-04-23

语文教师工作总结范文(整理6篇) 2024-04-17

建筑工程风险管理(6篇) 2024-05-22

高分子材料的性质特点(6篇) 2024-05-22

英语绘本阅读教学策略(6篇) 2024-05-22